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Process Concept

An operating system executes a variety of programs:
batch system — jobs
time-shared systems — user programs or tasks
Process is a program in execution, its execution must progress in sequential fashion
a program is static and passive, process is dynamic and active
one program can be several processes (e.g., multiple instances of browser)

process can be started via GUI or command line entry of its name, etc



Process Concept

- A process has multiple parts:
- the program code, also called text section
runtime CPU states, including program counter, registers, etc
*various types of memory:

- stack: temporary data

- e.g., function parameters, local variables, and return addresses
- data section: global variables

heap: memory dynamically allocated during runtime
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Process State

As a process executes, it changes state
new: the process is being created
running: instructions are being executed
waiting: the process is waiting for some event to occur
ready: the process is waiting to be assigned to a processor

terminated: the process has finished execution



Diagram of Process State
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Process Control Block (PCB)

- In the kernel, each process is associated with a process control block
» process number (pid)
* [process state
* program counter
- CPU regqisters
+  CPU scheduling information
*  memory-management data
* accounting data
- 1/O status

-+ Linux’s PCB is defined in struct task_struct: http://Ixr.linux.no/linux+v3.2.35/
include/linux/sched.h#l 1221



http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221
http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221
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Process Control Block in Linux

Represented by the C structure task_struct

pid_t pid; /* process identifier x/
long state; /* state of the process *x/
unsigned int time_slice /* scheduling information %/

struct task struct xparent; /x this process’s parent *x/

struct list head children; /% this process’s children x/
struct files struct xfiles; /% list of open files x/

struct mm_struct xmm, /* address space of this processx/
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Process Scheduling

To maximize CPU utilization, kernel quickly switches processes onto CPU for time sharing
Process scheduler selects among available processes for next execution on CPU

Kernel maintains scheduling queues of processes:

job queue: set of all processes in the system

ready queue: set of all processes residing in main memory, ready and waiting to execute
device queues: set of processes waiting for an I/O device

Processes migrate among the various queues
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Ready Queue And Device Queues
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Schedulers

Long-term scheduler (or job scheduler)
* selects which processes should be brought into the ready queue
- long-term scheduler is invoked very infrequently
- usually in seconds or minutes: it may be slow
* long-term scheduler controls the degree of multiprogramming
- Short-term scheduler (or CPU scheduler)
- selects which process should be executed next and allocates CPU
- short-term scheduler is invoked very frequently
- usually in milliseconds: it must be fast
- sometimes the only scheduler in a system
Mid-term scheduler

- swap in/out partially executed process to relieve memory pressure
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Scheduler

- Scheduler needs to balance the needs of:
I/0-bound process
* spends more time doing I/O than computations
- many short CPU bursts
- CPU-bound process
* spends more time doing computations

- few very long CPU bursts



Context Switch

- Context switch: the kernel switches to another process for execution
-+ save the state of the old process
load the saved state for the new process
- Context-switch is overhead; CPU does no useful work while switching
- the more complex the OS and the PCB, longer the context switch
- Context-switch time depends on hardware support

- some hardware provides multiple sets of registers per CPU: multiple contexts
loaded at once
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Process Creation

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

process identified and managed via a process identifier (pid)

Design choices:

- three possible levels of resource sharing: all, subset, none
parent and children’s address spaces
- child duplicates parent address space (e.g., Linux)
- child has a new program loaded into it (e.g., Windows)
- execution of parent and children
parent and children execute concurrently

parent waits until children terminate



Process Creation

UNIX/Linux system calls for process creation
fork creates a new process
exec overwrites the process’ address space with a new program

wait waits for the child(ren) to terminate
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C Program Forking Separate Process

#1include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()

{

pid_t pid;

pid = fork(); /* fork another process */

1f (pid < 0) { /* error occurred while forking */
fprintf(stderr, "Fork Failed™);
return -1;

} else 1f (pid == 0) { /* child process */
execlp("/bin/Ls™, "1ls"™, NULL);

} else { /* parent process */

wait (NULL);
printf ("Child Complete™);
¥

return 0;




A Tree of Processes on Solaris
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Process Termination

- Process executes last statement and asks the kernel to delete it (exit)
- OS delivers the return value from child to parent (via wait)
*+ process’ resources are deallocated by operating system
- Parent may terminate execution of children processes (abort), for example:
- child has exceeded allocated resources
- task assigned to child is no longer required
- if parent is exiting, some OS does not allow child to continue

- all children (the sub-tree) will be terminated - cascading termination



Interprocess Communication

+ Processes within a system may be independent or cooperating

- Independent process: process that cannot affect or be affected by
the execution of another process

+ cooperating process: processes that can affect or be affected by
other processes, including sharing data

* reasons for cooperating processes: information sharing,
computation speedup, modularity, convenience, Security

- Cooperating processes need interprocess communication (IPC)

- A common paradigm: producer-consumer problem

* Producer process produces information that is consumed by a
consumer pProcess



Producer-consumer Based on Ring Buffer

Shared data
#define BUFFER_SIZE 10

typedef struct {
} 1tem;

1tem buffer[BUFFER_SIZE];
int 1n = 0;
int out = 0;



Producer

1tem nextProduced;

while (true) {
/* produce an item i1n nextProduced*/

while (((in + 1) % BUFFER_SIZE) == out)
/* do nothing -- no free buffers */

b

buffer[in] = nextProduced;
in = (in + 1) % BUFFER SIZE;



consumer

1tem nextConsumed;
while (true) {
while (1n == out)
; // do nothing -- nothing to consume
nextConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
/*consume i1tem 1n nextConsumed*/

Solution is correct, but can only use BUFFER_SIZE-1 elements
one unusable buffer to distinguish buffer full/empty
how to utilize all the buffers? (job interview question)
without using one more variables”

need to synchronize access to buffer



Two Communication Models
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Shared Memory

Kernel maps the same physical memory into the collaborating processes
might e at different virtual addresses

Each process can access the shared memory independently & simultaneously

- Access to shared memory must be synchronized (e.g., using locks)

- Shared memory is ideal for exchanging large amount of data



Message Passing

- Processes communicate with each other by exchanging messages
- without resorting to shared variables
- Message passing provides two operations:
- send (message)
* receive (message)
If P and Q wish to communicate, they need to:
- establish a communication link between them
- e.g., a mailbox or pid-based

- exchange messages via send/receive



Message Passing: Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

- blocking send has the sender block until the message is received

- blocking receive has the receiver block until a message is available
Non-blocking is considered asynchronous

- non-blocking send has the sender send the message and continue

* non-blocking receive has the receiver receive a valid message or null




Message

Passing: Buffering

- Queue of messages attached to the link

- zero capacity: O messages

+sender must wait for receiver (rendezvous)

- bounded capacity: finite length of n messages

- sender must wait If link full

- unbounded capacity: infinite length

- sender never waits




—xample Message Passing Primitives

- Sockets
Remote procedure calls
Pipes

Remote method invocation (Java)



Sockets

- A socket is defined as an endpoint for communication
-+ concatenation of I[P address and port

- socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

- Communication consists between a pair of sockets



Socket Communication
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Remote Procedure Call

Remote procedure call (RPC) abstracts function calls between processes across
networks

- Stub: a proxy for the actual procedure on the remote machine
- client-side stub locates the server and marshalls the parameters

- server-side stub receives this message, unpacks the marshalled parameters,
and performs the procedure on the server
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Plpes

Pipe acts as a conduit allowing two local processes to communicate
ISsues

IS communication unidirectional or bidirectional?

INn the case of two-way communication, is it half or full-duplex”?

must there exist a relationship (i.e. parent-child) between the processes”?

can the pipes be used over a network??

usually only for local processes



Ordinary Pipes

- Ordinary pipes allow communication in the producer-consumer style
+ producer writes to one end (the write-end of the pipe)
» consumer reads from the other end (the read-end of the pipe)
- ordinary pipes are therefore unidirectional
Require parent-child relationship between communicating processes

- Activity: review Linux man pipe



Ordinary Pipes
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Named Pipes

Named pipes are more powerful than ordinary pipes
communication is bidirectional
no parent-child relationship is necessary between the processes

several processes can use the named pipe for communication

Named pipe is provided on both UNIX and Windows systems

On Linux, it is called FIFO



—xamples: Linux [PC

- Communication:
- Pipes
- Sockets
- Shared memory
- Message queues

- Semaphores

- Signals

- Synchronization
- EBventfd
- Futexes
- Locks

- Condition variables



Linux IPC - Communication
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Linux IPC - Synchronization
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Linux IPC: System V Shared Memory

- Process first creates shared memory segment
segment id = shmget(key, size, flag);

+ Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, O);

- Now the process could write to the shared memory

- When done, a process can detach the shared memory

shmdt(shared memory);



—nd of Chapter 3



