COP 4610: Introduction to Operating Systems (Fall 2016)

Chapter 3: Process

Zhi Wang
Florida State University

Contents

Process concept

Process scheduling

Operations on processes

Inter-process communication
examples of IPC Systems

Communication in client-server systems

Process Concept

An operating system executes a variety of programs:
batch system — jobs
time-shared systems — user programs or tasks
Process is a program in execution, its execution must progress in sequential fashion
a program is static and passive, process is dynamic and active
one program can be several processes (e.g., multiple instances of browser)

process can be started via GUI or command line entry of its name, etc

Process Concept

- A process has multiple parts:
- the program code, also called text section
runtime CPU states, including program counter, registers, etc
*various types of memory:

- stack: temporary data

- e.g., function parameters, local variables, and return addresses
- data section: global variables

heap: memory dynamically allocated during runtime

Process iIn Memory

max

stack

heap

data

text

Process State

As a process executes, it changes state
new: the process is being created
running: instructions are being executed
waiting: the process is waiting for some event to occur
ready: the process is waiting to be assigned to a processor

terminated: the process has finished execution

Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Process Control Block (PCB)

- In the kernel, each process is associated with a process control block
» process number (pid)
* [process state
* program counter
- CPU regqisters
+ CPU scheduling information
* memory-management data
* accounting data
- 1/O status

-+ Linux’s PCB is defined in struct task_struct: http://Ixr.linux.no/linux+v3.2.35/
include/linux/sched.h#l 1221

http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221
http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221

Process Control

Block (

PG

5)

process state

process number

program counter

registers

memory limits

list of open files

Process Control Block in Linux

Represented by the C structure task_struct

pid_t pid; /* process identifier x/
long state; /* state of the process *x/
unsigned int time_slice /* scheduling information %/

struct task struct xparent; /x this process’s parent *x/

struct list head children; /% this process’s children x/
struct files struct xfiles; /% list of open files x/

struct mm_struct xmm, /* address space of this processx/

N NN

struct task_struct struct task_struct struct tasik_struct
process information process information ce e proecess informaton

t W W

current
(currently executing proccess)

Process Scheduling

To maximize CPU utilization, kernel quickly switches processes onto CPU for time sharing
Process scheduler selects among available processes for next execution on CPU

Kernel maintains scheduling queues of processes:

job queue: set of all processes in the system

ready queue: set of all processes residing in main memory, ready and waiting to execute
device queues: set of processes waiting for an I/O device

Processes migrate among the various queues

Queues for Process Scheduling

5 ready queue CPU g
/O queue *=—— |/O request [—

time slice E

expired

interrupt wait for an
OCCUrs interrupt

child fork a
@‘— child)

Ready Queue And Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

queue header PCB, PCB,
head = > 2l
el registers registers
head -ﬂ-_\ /
Elll g
head T—=
e PCB, PCB,, PCBg

/ — — 5
head 4
PCB;

head - - ——

tail

\

Schedulers

Long-term scheduler (or job scheduler)
* selects which processes should be brought into the ready queue
- long-term scheduler is invoked very infrequently
- usually in seconds or minutes: it may be slow
* long-term scheduler controls the degree of multiprogramming
- Short-term scheduler (or CPU scheduler)
- selects which process should be executed next and allocates CPU
- short-term scheduler is invoked very frequently
- usually in milliseconds: it must be fast
- sometimes the only scheduler in a system
Mid-term scheduler

- swap in/out partially executed process to relieve memory pressure

Medium Term Scheduling

swap in

partially executed

swapped-out processes

swap out

Yy

ready queue

» end

I/O waiting
queues

Scheduler

- Scheduler needs to balance the needs of:
I/0-bound process
* spends more time doing I/O than computations
- many short CPU bursts
- CPU-bound process
* spends more time doing computations

- few very long CPU bursts

Context Switch

- Context switch: the kernel switches to another process for execution
-+ save the state of the old process
load the saved state for the new process
- Context-switch is overhead; CPU does no useful work while switching
- the more complex the OS and the PCB, longer the context switch
- Context-switch time depends on hardware support

- some hardware provides multiple sets of registers per CPU: multiple contexts
loaded at once

Context Switch

process P,

operating system process P,

interrupt or system call

executing / l

~

> idle

-~

executing \

save state into PCB,

reload state from PCB,

interrupt or system call

! T

save state into PCB;

reload state from PCB,

/-

> idle

executing

> idle

Process Creation

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

process identified and managed via a process identifier (pid)

Design choices:

- three possible levels of resource sharing: all, subset, none
parent and children’s address spaces
- child duplicates parent address space (e.g., Linux)
- child has a new program loaded into it (e.g., Windows)
- execution of parent and children
parent and children execute concurrently

parent waits until children terminate

Process Creation

UNIX/Linux system calls for process creation
fork creates a new process
exec overwrites the process’ address space with a new program

wait waits for the child(ren) to terminate

Process Creation

parent Wt resumes

child - exec() »

C Program Forking Separate Process

#1include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()

{

pid_t pid;

pid = fork(); /* fork another process */

1f (pid < 0) { /* error occurred while forking */
fprintf(stderr, "Fork Failed™);
return -1;

} else 1f (pid == 0) { /* child process */
execlp("/bin/Ls™, "1ls"™, NULL);

} else { /* parent process */

wait (NULL);
printf ("Child Complete™);
¥

return 0;

A Tree of Processes on Solaris

pageout

dtlogin
pid = 251

telnetdaemon X_session
pid =7776 pid = 284
sdt_shel
pid = 340

Csh
pid = 1400

l cat
pid = 2536

Csh
pid =7778

Netscape emacs
pid = 7785 pid = 8105

Process Termination

- Process executes last statement and asks the kernel to delete it (exit)
- OS delivers the return value from child to parent (via wait)
*+ process’ resources are deallocated by operating system
- Parent may terminate execution of children processes (abort), for example:
- child has exceeded allocated resources
- task assigned to child is no longer required
- if parent is exiting, some OS does not allow child to continue

- all children (the sub-tree) will be terminated - cascading termination

Interprocess Communication

+ Processes within a system may be independent or cooperating

- Independent process: process that cannot affect or be affected by
the execution of another process

+ cooperating process: processes that can affect or be affected by
other processes, including sharing data

* reasons for cooperating processes: information sharing,
computation speedup, modularity, convenience, Security

- Cooperating processes need interprocess communication (IPC)

- A common paradigm: producer-consumer problem

* Producer process produces information that is consumed by a
consumer pProcess

Producer-consumer Based on Ring Buffer

Shared data
#define BUFFER_SIZE 10

typedef struct {
} 1tem;

1tem buffer[BUFFER_SIZE];
int 1n = 0;
int out = 0;

Producer

1tem nextProduced;

while (true) {
/* produce an item i1n nextProduced*/

while (((in + 1) % BUFFER_SIZE) == out)
/* do nothing -- no free buffers */

b

buffer[in] = nextProduced;
in = (in + 1) % BUFFER SIZE;

consumer

1tem nextConsumed;
while (true) {
while (1n == out)
; // do nothing -- nothing to consume
nextConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
/*consume i1tem 1n nextConsumed*/

Solution is correct, but can only use BUFFER_SIZE-1 elements
one unusable buffer to distinguish buffer full/empty
how to utilize all the buffers? (job interview question)
without using one more variables”

need to synchronize access to buffer

Two Communication Models

process A

-

process B

message queue

—hMo‘ﬂ‘H ‘l‘ﬂg‘l‘ﬂa‘ \m,,

kemel

(a)

Message Passing

process A

5

shared memory

process B

kernel

(b)
Shared Memory

Shared Memory

Kernel maps the same physical memory into the collaborating processes
might e at different virtual addresses

Each process can access the shared memory independently & simultaneously

- Access to shared memory must be synchronized (e.g., using locks)

- Shared memory is ideal for exchanging large amount of data

Message Passing

- Processes communicate with each other by exchanging messages
- without resorting to shared variables
- Message passing provides two operations:
- send (message)
* receive (message)
If P and Q wish to communicate, they need to:
- establish a communication link between them
- e.g., a mailbox or pid-based

- exchange messages via send/receive

Message Passing: Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

- blocking send has the sender block until the message is received

- blocking receive has the receiver block until a message is available
Non-blocking is considered asynchronous

- non-blocking send has the sender send the message and continue

* non-blocking receive has the receiver receive a valid message or null

Message

Passing: Buffering

- Queue of messages attached to the link

- zero capacity: O messages

+sender must wait for receiver (rendezvous)

- bounded capacity: finite length of n messages

- sender must wait If link full

- unbounded capacity: infinite length

- sender never waits

—xample Message Passing Primitives

- Sockets
Remote procedure calls
Pipes

Remote method invocation (Java)

Sockets

- A socket is defined as an endpoint for communication
-+ concatenation of I[P address and port

- socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

- Communication consists between a pair of sockets

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
QI 2518 (es10)

Remote Procedure Call

Remote procedure call (RPC) abstracts function calls between processes across
networks

- Stub: a proxy for the actual procedure on the remote machine
- client-side stub locates the server and marshalls the parameters

- server-side stub receives this message, unpacks the marshalled parameters,
and performs the procedure on the server

—xecution of

RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to

messages

From: client
To: server

matchmaker to
find port number

kernel places

server

Port: matchmaker
Re: address
for RPC X

From: server
To: client

A

port Pin user
RPC message

kernel sends

Y

matchmaker
receives
message, looks
up answer

Y

Port: kernel
Re: RPC X
Port: P

From: client
To: server

RPC

kernel receives

A

matchmaker
replies to client
with port P

Port: port P
<contents>

From: RPC
Port: P

reply, passes
it to user

4

daemon
listening to
port P receives
message

h 4

To: client
Port: kernel
<output>

daemon
processes
request and
processes send
output

Plpes

Pipe acts as a conduit allowing two local processes to communicate
ISsues

IS communication unidirectional or bidirectional?

INn the case of two-way communication, is it half or full-duplex”?

must there exist a relationship (i.e. parent-child) between the processes”?

can the pipes be used over a network??

usually only for local processes

Ordinary Pipes

- Ordinary pipes allow communication in the producer-consumer style
+ producer writes to one end (the write-end of the pipe)
» consumer reads from the other end (the read-end of the pipe)
- ordinary pipes are therefore unidirectional
Require parent-child relationship between communicating processes

- Activity: review Linux man pipe

Ordinary Pipes

fd(0)

parent
fd{1)

fd(0)

'y

pipe

A

A

child

fd(1)

Named Pipes

Named pipes are more powerful than ordinary pipes
communication is bidirectional
no parent-child relationship is necessary between the processes

several processes can use the named pipe for communication

Named pipe is provided on both UNIX and Windows systems

On Linux, it is called FIFO

—xamples: Linux [PC

- Communication:
- Pipes
- Sockets
- Shared memory
- Message queues

- Semaphores

- Signals

- Synchronization
- EBventfd
- Futexes
- Locks

- Condition variables

Linux IPC - Communication

stream [T (FFO)
p —(stream socket)
pseudo-
X terminal)
—{ sysv MQ)
—{(POSIX MQ)
message

—(datagram socket)

Cross-memory
attach

data
transfer
shared
memory

(Sysv shmem)

(POSIX shmem)

_[mcm?ry Ji—(anonymous)
mapping —(file mapping)

source: http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf

Linux IPC - Synchronization

synchronization
=D o

thread-
related

SysV Sem
—| semaphore }—[E) —(named)
POSIX Sem)—

—(unnamed)

—(ﬁle lock (ﬂock()))

"record lock" (fC”“m)

mutex)
I:Econd. var.)
—(barrier)
—{(r/W lock]

source: http://man7.org/conf/lca2013/IPC_Overview-LCA-2013-printable.pdf

Linux IPC: System V Shared Memory

- Process first creates shared memory segment
segment id = shmget(key, size, flag);

+ Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, O);

- Now the process could write to the shared memory

- When done, a process can detach the shared memory

shmdt(shared memory);

—nd of Chapter 3

